DNA Damage and Repair Alternative NHEJ Pathway Components Are Therapeutic Targets in High-Risk Neuroblastoma
نویسندگان
چکیده
Inneuroblastoma,MYCNgenomicamplificationand segmental chromosomal alterations including1por11q lossofheterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis of affected genomic regions suggests that these errors arise by nonhomologous end-joining (NHEJ) of DNA double-strand breaks (DSB), abnormalities in NHEJ have not been implicated in neuroblastoma pathogenesis. On this basis, the hypothesis that an error-prone mechanism of NHEJ is critical for neuroblastoma cell survivalwas tested. Plasmid-basedDSB repair assays demonstrated efficient NHEJ activity in human neuroblastoma cells with repair products that were error-prone relative to nontransformed cells. Neuroblastoma cells derived from tumorigenic neuroblastic phenotypes had differential DNA repair protein expression patterns comparedwithnontumorigenic cells. Tumorigenicneuroblastoma cells were deficient in DNA ligase IV (Lig4) and Artemis (DCLRE1C), mediators of canonical NHEJ. Conversely, enzymes required for an error-prone alternative NHEJ pathway (alt-NHEJ), DNA Ligase IIIa (Lig3), DNA Ligase I (Lig1), and PARP1 protein were upregulated. Inhibition of Lig3 and Lig1 led to DSB accumulation and cell death, linking alt-NHEJ to cell survival in neuroblastoma. Neuroblastoma cells demonstrated sensitivity to PARP1 inhibition (PARPi) that paralleled PARP1 expression. In a dataset of human neuroblastoma patient tumors, overexpression of genes encoding alt-NHEJ proteins associatedwith poor survival. Implications: These findings provide an insight into DNA repair fidelity in neuroblastoma and identify components of the altNHEJ pathway as promising therapeutic targets. Mol Cancer Res; 13(3); 470–82. 2015 AACR.
منابع مشابه
Alternative NHEJ Pathway Components Are Therapeutic Targets in High-Risk Neuroblastoma.
UNLABELLED In neuroblastoma, MYCN genomic amplification and segmental chromosomal alterations including 1p or 11q loss of heterozygocity and/or 17q gain are associated with progression and poor clinical outcome. Segmental alterations are the strongest predictor of relapse and result from unbalanced translocations attributable to erroneous repair of chromosomal breaks. Although sequence analysis...
متن کاملDNA Damage and Cellular Stress Responses Targeting Abnormal DNARepair in Therapy-Resistant Breast Cancers
Although hereditary breast cancers have defects in the DNA damage response that result in genomic instability, DNA repair abnormalities in sporadic breast cancers have not been extensively characterized. Recently, we showed that, relative to nontumorigenic breast epithelial MCF10A cells, estrogen receptor–positive (ERþ) MCF7 breast cancer cells and progesterone receptor–positive (PRþ) MCF7 brea...
متن کاملAlternative pathways for the repair of RAG-induced DNA breaks.
RAG1 and RAG2 cleave DNA to generate blunt signal ends and hairpin coding ends at antigen receptor loci in lymphoid cells. During V(D)J recombination, repair of these RAG-generated double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway contributes substantially to the antigen receptor diversity necessary for immune system function, although recent evidence also supports the...
متن کاملInhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response
Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor...
متن کاملUp-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks.
Expression of oncogenic BCR-ABL in chronic myeloid leukemia (CML) results in increased reactive oxygen species (ROS) that in turn cause increased DNA damage, including DNA double-strand breaks (DSBs). We have previously shown increased error-prone repair of DSBs by nonhomologous end-joining (NHEJ) in CML cells. Recent reports have identified alternative NHEJ pathways that are highly error prone...
متن کامل